1 I. About the distribution tables
3 The table used for "synthesizing" the distribution is essentially a scaled,
4 translated, inverse to the cumulative distribution function.
6 Here's how to think about it: Let F() be the cumulative distribution
7 function for a probability distribution X.  We'll assume we've scaled
8 things so that X has mean 0 and standard deviation 1, though that's not
9 so important here.  Then:
11         F(x) = P(X <= x) = \int_{-inf}^x f
13 where f is the probability density function.
15 F is monotonically increasing, so has an inverse function G, with range
16 0 to 1.  Here, G(t) = the x such that P(X <= x) = t.  (In general, G may
17 have singularities if X has point masses, i.e., points x such that
18 P(X = x) > 0.)
20 Now we create a tabular representation of G as follows:  Choose some table
21 size N, and for the ith entry, put in G(i/N).  Let's call this table T.
23 The claim now is, I can create a (discrete) random variable Y whose
24 distribution has the same approximate "shape" as X, simply by letting
25 Y = T(U), where U is a discrete uniform random variable with range 1 to N.
26 To see this, it's enough to show that Y's cumulative distribution function,
27 (let's call it H), is a discrete approximation to F.  But
29         H(x) = P(Y <= x)
30              = (# of entries in T <= x) / N   -- as Y chosen uniformly from T
31              = i/N, where i is the largest integer such that G(i/N) <= x
32              = i/N, where i is the largest integer such that i/N <= F(x)
33                         -- since G and F are inverse functions (and F is
34                            increasing)
35              = floor(N*F(x))/N
37 as desired.
39 II. How to create distribution tables (in theory)
41 How can we create this table in practice? In some cases, F may have a
42 simple expression which allows evaluating its inverse directly.  The
43 pareto distribution is one example of this.  In other cases, and
44 especially for matching an experimentally observed distribution, it's
45 easiest simply to create a table for F and "invert" it.  Here, we give
46 a concrete example, namely how the new "experimental" distribution was
47 created.
49 1. Collect enough data points to characterize the distribution.  Here, I
50 collected 25,000 "ping" roundtrip times to a "distant" point (time.nist.gov).
51 That's far more data than is really necessary, but it was fairly painless to
52 collect it, so...
54 2. Normalize the data so that it has mean 0 and standard deviation 1.
56 3. Determine the cumulative distribution.  The code I wrote creates a table
57 covering the range -10 to +10, with granularity .00005.  Obviously, this
58 is absurdly over-precise, but since it's a one-time only computation, I
59 figured it hardly mattered.
61 4. Invert the table: for each table entry F(x) = y, make the y*TABLESIZE
62 (here, 4096) entry be x*TABLEFACTOR (here, 8192).  This creates a table
63 for the ("normalized") inverse of size TABLESIZE, covering its domain 0
64 to 1 with granularity 1/TABLESIZE.  Note that even with the granularity
65 used in creating the table for F, it's possible not all the entries in
66 the table for G will be filled in.  So, make a pass through the
67 inverse's table, filling in any missing entries by linear interpolation.
69 III. How to create distribution tables (in practice)
71 If you want to do all this yourself, I've provided several tools to help:
73 1. maketable does the steps 2-4 above, and then generates the appropriate
74 header file.  So if you have your own time distribution, you can generate
77         maketable < time.values > header.h
79 2. As explained in the other README file, the somewhat sleazy way I have
80 of generating correlated values needs correction.  You can generate your
81 own correction tables by compiling makesigtable and makemutable with
82 your header file.  Check the Makefile to see how this is done.
84 3. Warning: maketable, makesigtable and especially makemutable do
85 enormous amounts of floating point arithmetic.  Don't try running
86 these on an old 486.  (NIST Net itself will run fine on such a
87 system, since in operation, it just needs to do a few simple integral
88 calculations.  But getting there takes some work.)
90 4. The tables produced are all normalized for mean 0 and standard
91 deviation 1.  How do you know what values to use for real?  Here, I've
92 provided a simple "stats" utility.  Give it a series of floating point
93 values, and it will return their mean (mu), standard deviation (sigma),
94 and correlation coefficient (rho).  You can then plug these values
95 directly into NIST Net.